Estimating the deformation of river bed using dimensionless geometric parameters and mathematical model
Ocena deformacije rečne struge z uporabo brezdimenzijskih geometrijskih parametrov in matematičnega modela
- Avtorji: Nerma Lazović, Mario Krzyk
- Citat: Acta hydrotechnica, vol. 37, no. 67, pp. 173-189, 2024. https://doi.org/10.15292/acta.hydro.2024.10
- Povzetek: Struga reke, vrezana v aluvialno podlago, se nenehno prilagaja spremembam vodnega toka in transporta plavin. V prispevku je predstavljen nov pristop k določanju velikosti deformacije struge, ki temelji na opredelitvi brezdimenzijskih prostorskih parametrov deformacije struge. Ocena uporabnosti novega pristopa temelji na eksperimentalnih študijah na reki Željeznici na območju Sarajevskega polja v osrednjem delu Bosne in Hercegovine. Morfološke spremembe struge v desetletnem obdobju so analizirane na podlagi brezdimenzijskih parametrov geometrije struge. S pomočjo matematičnega modela in izbrane enačbe za transport plavin je izvedena numerična analiza sprememb v strugi reke Željeznice. Analiza občutljivosti parametrov modela deformacije rečne struge in analiza statistične zanesljivosti numeričnega modela sta pokazali dobro ujemanje med modeliranimi in opazovanimi vrednostmi deformacije rečne struge v analiziranem obdobju.
- Ključne besede: Rečna morfologija, brezdimenzijski geometrijski parametri, rečni režim, transport plavin, deformacija struge, HEC-RAS, reka Željeznica, zanesljivost modela.
- Polno besedilo: a37nl.pdf
- Viri:
- Ackers, P. W. W. (1973). Sediment transport: a new approach and analysis, Journal of Hydraulics 99(11), 2041-2060. https://doi.org/10.1061/JYCEAJ.0003791.
- Andualem, T.G., Peters, S., Hewa, G.A., Myers, B.R., Boland, J., Pezzaniti, D. (2024). Channel morphological change monitoring using high-resolution LiDAR-derived DEM and multi-temporal imageries, Science of The Total Environment 921. https://doi.org/10.1016/j.scitotenv.2024.171104.
- Balzhieva, D. (2015): Analysis of morphological changes of the Danube on the basis of repeated river bed surveys. Doctoral dissertation. Technische Universitat Wien, 386 p., https://doi.org/10.34726/hss.2015.34329.
- Beyene, A.M., Abate, M., Sinshaw, B.G., Belete, A.M., Chekole, B.Z. (2023). Anthropogenic amplification of geomorphic processes on fluvial channel morphology, case study in Gilgel Abay River Mouth; Lake Tana Sub Basin, Ethiopia, Heliyon 9(4), 14390. https://doi.org/10.1016/j.heliyon.2023.e14390.
- Buffington J. M. (2012). “Changes in Channel Morphology Over Human Time Scales” in M. Church, P. M. Biron, A. G. Roy, Eds.,, Gravel-Bed Rivers: Processes, Tools, Environments. John Wiley & Sons, Ltd, 433-463, https://doi.org/10.1002/9781119952497.ch32.
- Chang, H.H. (1988). Fluvial Processes in River Engineering. Krieger Publishing Company, Malabar, 432 p.
- Chang, K.H., Wu, Y.T., Wang, C.H., Chang, T.J. (2024). A new 2D ESPH bedload sediment transport model for rapidly varied flows over mobile beds, Journal of Hydrology 634, 131002. https://doi.org/10.1016/j.jhydrol.2024.131002.
- Ðorđević, D., Tamás, E.A., Mihajlović, L., Abonyi, C., Vujanović, A., Kalocsa, B. (2023). Estimation of Changes in Sediment Transport along the Free-Flowing Middle Danube River Reach, Appl. Sci. 13(18), 10513. https://doi.org/10.3390/app131810513.
- Glock, K., Tritthart, M., Habersack, H. and Hauer, C. (2019). Comparison of Hydrodynamics Simulated by 1D, 2D and 3D Models Focusing on Bed Shear Stresses. Water 11(2), 226. https://doi.org/10.3390/w11020226.
- Ibisate, A., Ollero, A., Diaz, E. (2011). Influence of catchment processes on fluvial morphology and river habitats, Limnetica 30(2), 169-182. https://doi.org/10.23818/limn.30.14.
- Ibitoye, M. O. (2021). A remote sensing-based evaluation of channel morphological characteristics of part of lower river Niger, Nigeria, SN Applied Science 3(3), 340. https://doi.org/10.1007/s42452-021-04215-1.
- Jovanović, M. (2008). Regulacija reka - Rečna hidraulika i morfologija, Građevinski fakultet Univerziteta u Beogradu, Beograd, p. 472 (in Serbian).
- Krzyk, M. (1997). Two-dimensional mathematical model of convective-diffusion transport of concentration and suspended load in free surface flows, Acta hydrotechnica 15, 5-100. https://doi.org/10.5545/sv-jme.2010.216.
- Krzyk, M., Četina, M. (2003). A Two-Dimensional Mathematical Model of Suspended-Sediment Transport, Journal of Mechanical Engineering 49(3), 173-184.
- Lane, E.W. (1955). The importance of fluvial morphology in hydraulic engineer. American Society of Civil Engineering Proceeding, Journal of the Hydraulics 81(745), 1-17.
- Langat, P.K., Kumar, L., Koech, R., Ghosh, M.K. (2020). Characterisation of channel morphological pattern changes and flood corridor dynamics of the tropical Tana River fluvial systems, Kenya, Jounal of African Earth Sciences 163, 103748. https://doi.org/10.1016/j.jafrearsci.2019.103748.
- Lazović, N. (2021). Doprinos proučavanju opšte deformacije riječnog korita primjenom terenskih i numeričkih istraživanja (Doktorska disertacija). Građevinski fakultet Univerziteta u Sarajevu, p. 169., https://doi.org/10.13140/RG.2.2.11636.97922 (in Bosnian).
- Lazović, N., Hadžić, E., Kalajdžisalihović, H., Krzyk, M., Šuvalija, S. (2023). “Determination of the Magnitude of Riverbed Spatial Deformation Caused by Hydrological-Hydraulic and Anthropogenic Influences“ in N. Ademović, E. Mujčić, M. Mulić, J. Kevrić, Z. Akšamija, Eds. Advanced Technologies, Systems, and Applications VII. IAT 2022. Lecture Notes in Networks and Systems. Springer, Cham, 166-178. https://doi.org/10.1007/978-3-031-17697-5_14.
- Ma, C., Qiu, D., Mu, X., Gao, P. (2022). Morphological Evolution Characteristics of River Cross-Sections in the Lower Weihe River and Their Response to Streamflow and Sediment Changes, Water 14, 3419. https://doi.org/10.3390/w14213419.
- Mahdizadeh, H., Sharifi, S. (2021). Coupled and splitting bedload sediment transport models based on a modified flux-wave approach, International Journal of Sediment Research 36(1), 38-49. https://doi.org/10.1016/j.ijsrc.2020.05.001.
- Martínez-Aranda, S., Murillo, J., García-Navarro, P. (2019). A 1D numerical model for the simulation of unsteady and highly erosive flows in rivers, Computers and Fluids 181, 8-34. https://doi.org/10.1016/j.compfluid.2019.01.011.
- Minh Hai, D., Umeda, S., Yuhi, M. (2019). Morphological Changes of the Lower Tedori River, Japan, over 50 Years, Water 11(9), 1852. https://doi.org/10.3390/w11091852.
- Momin, H., Biswas, R., Tamang, C. (2022). Morphological analysis and channel shifting of the Fulahar river in Malda district, West Bengal, India using remote sensing and GIS techniques, GeoJournal, 87, 197–213. https://doi.org/10.1007/s10708-020-10248-7.
- Peng, H., Lyu, B., Li, J., Sun, M., Li, W., Cao, Z. (2022). A new two-phase shallow water hydro-sediment-morphodynamic model based on the HLLC solver and the hybrid LTS/GMaTS approach, Advances in Water Resources 166, 104254. https://doi.org/10.1016/j.advwatres.2022.104254.
- Rahman, M.M., Harada, D., Egashira, S. (2024). Numerical Simulation of River Channel Change in the Suspended Sediment-Dominated Downstream Reach of the Sangu River, Water 16, 1934. https://doi.org/10.3390/w16131934.
- Rinaldi, M., Simon, A. (1998). Bed-level adjustments in the Arno River, central Italy, Geomorphology 22(1), 57-71. https://doi.org/10.1016/S0169-555X(97)00054-8.
- Simon, A. (1989). A model of channel response in disturbed alluvial channels, Earth Surface Processes and Landforms 14, 11–26. https://doi.org/10.1002/esp.3290140103.
- Singh V. P. (2003). On the Theories of Hydraulic Geometry, International Journal of Sediment Research 18(3), 196-218
- Spasojević, M. (1996). Numerička hidraulika - otvoreni tokovi. Građevinski fakultet Subotica, 151 p. (in Serbian).
- Stipić, D., Budinski, Lj., Fabian, J. (2022). Sediment transport and morphological changes in shallow flows modelled with the lattice Boltzmann method, Journal of Hydrology 606, 127472. https://doi.org/10.1016/j.jhydrol.2022.127472.
- Tang, M., Jun Xu, Y., Xu, W., Wang, B., Cheng, H. (2021). Three-decadal erosion and deposition of channel bed in the Lower Atchafalaya River, the largest distributary of the Mississippi River. Geomorphology 380, 107638. https://doi.org/10.1016/j.geomorph.2021.107638.
- US Army Corps of Engineers, HEC-RAS - 2D Modeling User's Manual, version 5.0 (2016).
- Zheng, S., Edmonds, D.A., Wu, B.S., Han, S.S. (2019). Backwater controls on the evolution and avulsion of the Qingshuigou channel on the Yellow River Delta, Geomorphology 333, 137–151. https://doi.org/10.1016/j.geomorph.2019.02.032.