Monitoring framework for paired experiments to assess the changes in the water balance in urban forests and grass-covered plots
Predlog meritev na parnih ploskvah za potrebe ocene razlik v vodni bilanci urbanega gozda in travnatih površin
- Avtorji: András Herceg, Kamilla Orosz, Péter Kalicz, Katalin Anita Zagyvai-Kiss, Géza Király, Katarina Zabret, Mark Bryan Alivio, Gábor Keve, Dániel Koch, Lili Muraközy, Zoltán Gribovszki
- Citat: Acta hydrotechnica, vol. 38, no. 68, pp. 39-52, 2025. https://doi.org/10.15292/acta.hydro.2025.04
- Povzetek: Razumevanje učinkov, ki jih imajo drevesa na spremembe padavin, je pomembno za ublažitev posledic podnebnih sprememb in urbanizacije. V okviru slovensko-madžarskega projekta OTKA smo v botaničnem vrtu Univerze v Šopronu vzpostavili hidrološko raziskovalno območje na parnih ploskvah. Raziskovalna ploskev je zasnovana za primerjavo vodne bilance (prestrezanje, transpiracija, dinamika podzemne vode, infiltracija in odtok) med površino v gozdu in površino na travniku (kontrola). Ker se ploskvi nahajata v botaničnem vrtu univerze, bližina omogoča raznoliko in pogosto zbiranje podatkov ter stalno spremljanje. Dolgoročne hidrološke meritve ponujajo pomembne možnosti za preučevanje vodne bilance v gozdovih, ki so pomembne za oceno stanja. Predhodni rezultati, ki temeljijo na dveh letih meritev, lahko ponazorijo posebnosti in nakazujejo na precejšnjo spremenljivost, ki jo je treba zajeti, ter potrebne dejavnike pri načrtovanju spremljanja parnih ploskev. Predstavljene meritve ponujajo izhodišče za zasnovo meritev, ki omogočajo vpogled v kompleksno dinamiko vode pod krošnjami črnega bora ter primerjavo dinamike vlage v tleh in podtalnice med travnatimi in gozdnimi površinami.
- Ključne besede: Vodna bilanca, padavine, prepuščene padavine, prestrezanje, vlaga v tleh, nivo podzemne vode, urbani gozd, borovci.
- Polno besedilo: a38ah.pdf
- Viri:
- Abhijith, K.V., Kumar, P., Gallagher, J. (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – a review. Atmospheric Environment 162:71–86. https://doi.org/10.1016/j.atmosenv.2017.05.014.
- Ács, F., Breuer, H., Skarbit, N. (2015). Climate of Hungary in the twentieth century according to Feddema. Theoretical and Applied Climatology, 119(1–2), 161–169. https://doi.org/10.1007/s00704-014-1103-5.
- Asadian, Y., Weiler, M. (2009). A new approach in measuring rainfall interception by urban trees in coastal British Columbia. Water Quality Research Journal 44:16–25. https://doi.org/10.2166/wqrj.2009.003.
- Bartholy, J., Pongrácz, R. (2017). A közelmúlt és a jövő országos éghajlati trendjei. [Recent and future climate trends of Hungary]. Erdészeti Lapok, 152(5), 134–136. http://erdeszetilapok.oszk.hu/01824/pdf/EPA01192_erdeszeti_lapok_2017-05_134-136.pdf.
- Berland, A., Shiflett, S.A., Shuster, W.D. (2017). The role of trees in urban stormwater management. Landscape and Urban Planning, 162:167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017.
- Bolla, B., Manninger, M., Molnár, T., Horváth, B., Szolgay, J., Gribovszki, Z., Kalicz, P., & Szabó, A. (2024). Evaluation of the Compound Effects of the 2022 Drought and Heatwave on Selected Forest Monitoring Sites in Hungary in Relation to Its Multi-Year Drought Legacy. Forests, 15(6), 941. https://doi.org/10.3390/f15060941.
- Bolla, B., Szolgay, J., Gribovszki, Z., Kalicz, P., Dobó, M., Szabó, A. (2025). Analysis of the fluctuations of main water balance components at six forest stands in the Great Hungarian Plain, Acta Hydrologica Slovaca 26: 1 pp. 40-51., 12 p. https://doi.org/10.1016/10.31577/ahs-2025-0026.01.0004.
- Carlyle-Moses, D.E., Gash, J.H.C. (2011). Rainfall interception loss by forest canopies. In: Levia DF, Carlyle-Moses DE, Tanaka T (eds) Forest hydrology and biogeochemistry: synthesis of past research and future directions, Ecological Studies 216. Springer, Dordrecht, pp 407–423. https://doi.org/10.1007/978-94-007-1363-5_20.
- Chen, W.Y. (2015). The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: a nationwide estimate. Cities 44:112–120. https://doi.org/10.1016/j.cities.2015.01.005.
- Chung, J., Lee, Y., Kim, J., Jung, C., Kim, S. (2022). Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components. Remote Sense, 14, 465. https://doi.org/10.3390/rs14030465.
- Carlyle-Moses, D.E., Livesley, S., Baptista, M.D., Thom, J., Szota, C. (2020). Urban Trees as Green Infrastructure for Stormwater Mitigation and Use, in: Delphis F. Levia, Darryl E. Carlyle-Moses, Shin'ichi Iida, Beate Michalzik, Kazuki Nanko, Alexander Tischer (2020): Forest-Water Interactions (Ecological Studies Book 240), Springer, ISBN-13 978-3030260859
- De Moraes, M.A.E., Filho, W.M.M., Mendes, R.M., Bortolozo, C.A., Metodiev, D., De Andrade, M.R.M., Egas, H.M., Mendes, T.S.G., Pampuch, L.A. (2024). Antecedent Precipitation Index to Estimate Soil Moisture and Correlate as a Triggering Process in the Occurrence of Landslides. International Journal of Geosciences, 15, 70-86. https://doi.org/10.4236/ijg.2024.151006.
- Fathizadeh, O., Hosseini, S.M., Zimmerman, A. (2017). Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Science of the Total Environment, 601–602:1824–1837. https://doi.org/10.1016/j.scitotenv.2017.05.233.
- Fehér, B. (2024). Nagyméretarányú felmérési módszerek összehasonlítása egy kutatási célúparcella létesítése során, [Comparison of large-scale survey methods in the case of research-purpose plot creation] in Hungarian BS thesis, University of Sopron, Sopron, p. 35.
- Guevara-Escobar, A., González-Sosa E., Véliz-Chávez, C. (2007). Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area. J Hydrol 333:532–541. https://doi.org/10.1016/j.jhydrol.2006.09.017.
- Gribovszki, Z., Kalicz, P., Palocz-Andresen, M., Szalay, D., Varga, T. (2019). Hydrological role of Central European forests in changing climate – review, Időjárás / Quarterly Journal of the Hungarian Meteorological Service 123: 4 pp. 535-550, 16 p.
- Hewlett, J. D. (1982). Chapter 4-6 in Hewlett, John D., Principles of Forest Hydrology. University of Georgia Press – Athens, 25-89.
- Holder, C.D. (2013). Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology 6:483–490. https://doi.org/10.1002/eco.1278.
- Ilona, J., Bartók, B., Dumitrescu, A., Cheval, S., Gandhi, A., Tordai, Á.V., Weidinger, T. (2022). Using Long-Term Historical Meteorological Data for Climate Change Analysis in the Carpathian Region. Atmosphere, 13, 1751. https://doi.org/10.3390/atmos13111751.
- IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C.
- IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844.
- Jakeman, A. J., Hornberger, G. M. (1993). How much complexity is warranted in a rainfall-runoff model? Water Resources Research 29(8), 2637–2649, https://doi.org/10.1029/93WR00877.
- Jánosi, I.M., Bíró, T., Lakatos, B.O., Gallas, J.A.C., Szöllősi-Nagy, A. (2023). Changing Water Cycle under a Warming Climate: Tendencies in the Carpathian Basin. Climate, 11, 118. https://doi.org/10.3390/cli11060118.
- Járó Z. (1989). Az erdő vízforgalma, Az Erdő 124(8). 352–355.
- Kermavnar, J., Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosystems 20:1373–1387. https://doi.org/10.1007/s11252-017-0689-7.
- Keszeliová, A., Výleta, R., Danacova, M., Hlavčová, K., Sleziak, P., Gribovszki, Z., Szolgay, J. (2022). Detection of Changes in Evapotranspiration on a Catchment Scale Under Changing Climate Conditions in Selected River Basins of Slovakia. Slovak Journal of Civil Engineering. 30. 55-63. https://doi.org/10.2478/sjce-2022-0029.
- Kontur, I., Koris, K., Winter, J. (2003). Hidrológiai számítások. Koris, LINOGRAF (in Hungarian)
- Kucsara, M. (1996). Precipitation and Runoff in a Forest Small Watershed. Doctoral Thesis, University of Sopron, (in Hungarian).
- Kuehler, E. Hathaway, J., Tirpak, A. (2017). Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10:1–10. https://doi.org/10.1002/eco.1813.
- Lakatos, M., Bihari, Z., Izsák, B., Marton, A., Szentes, O. (2021). Megfigyelt éghajlat változások Magyarországon, Légkör, 66: 3, ISSN 0 133-3666
- Levia, D.F., Keim, R.F., Carlyle-Moses, D.E. (2011). Throughfall and stemflow in wooded ecosystems. In: Levia DF, Carlyle-Moses DE, Tanaka T (eds) Forest hydrology and biogeochemistry: synthesis of past research and future directions, Ecological Studies 216. Springer, Dordrecht, pp 425–443. https://doi.org/10.1007/978-94-007-1363-5_21.
- Lishman, C. E., Carlyle-Moses, D., Hill, D., Pypker, T. G., Winkler, R., Levia, D. (2015). Rainfall redistribution by the canopy of a juvenile lodgepole pine stand. Retrieved from Thompson Rivers University (Thesis)
- Llorens, P., Gallart, F., Cayuela, C., Roig-Planasdemunt, M., Casellas, E., Molina, A.J., Moreno de las Heras, M., Bertran, G., Sánchez-Costa, E., Latron, J. (2018). What have we learnt about mediterranean catchment hydrology? 30 years observing hydrological processes in the Vallcebre research catchments. Cuadernos de Investigación Geográfica 44, http://doi.org/10.18172/cig.3432.
- Maidment D. R. (1993). Handbook of Hydrology, McGraw Hill, ISBN-10: 0070397325
- Muraközy, L., Kalicz, P., Kiss, M., Gribovszki, Z. (2023). Data integration and error analysis of the botanical garden’s hydrometeorological station in Sopron, In: Kalicz, Péter; Hlavcová, Kamila; Kohnová, Silvia; Széles, Borbála; Liová, Anna; Gribovszki, Zoltán (ed.): Hydrocarpath international conference: Hydrology of the Carpathian Basin: Catchment experiments and modeling for improved description and prediction of hydrological processes: Proceedings of the Conference, Sopron, Magyarország: Soproni Egyetem Kiadó, 151 p. pp. 64-70. Paper: Article ID: P16, 7 p.
- Muraközy L. (2024). Meteorological data analysis from a forestry perspective in Sopron Botanical Garden, MS Thesis, Faculty of Forestry, University of Sopron.
- Muraközy, L., Kovács, G., Szolgay, J., Kalicz, P., Výleta, R., Gribovszki, Z. (2025). Reconstruction and regime change analysis of manually recorded meteorological data from the Botanical Garden in Sopron, Hungary. Acta Hydrologica Slovaca. 26. 82-91. https://doi.org/10.31577/ahs-2025-0026.01.0008.
- Nevezi, Cs. (2019). Különböző felszínborítású völgyfenéki területek hidrológiai és botanikai jellemzői. University of sopron, Faculty of Forestry, (MSc thesis) (in Hungarian).
- Nordman, E.E., Isely, E., Isely, P. (2018) Benefit-cost analysis of stormwater green infrastructure practices for Grand Rapids, Michigan, USA. Journal of Cleaner Production, 200:501–510. https://doi.org/10.1016/j.jclepro.2018.07.152.
- Nytch, C.J., Melendez-Ackerman, E.J., Perez, M.E., Ortiz-Zayas, J.R. (2018). Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosystem 22:103–115. https://doi.org/10.1007/s11252-018-0768-4.
- Ossola, A., Hahs, A.K., Livesley, S.J. (2015). Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. Journal of Environmental Management, 159:1–10. https://doi.org/10.1016/j.jenvman.2015.05.002.
- Pretzsch, H., del Rio M., Ammer, C. (2015). Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 134:927–947. https://doi.org/10.1007/s10342-015-0900-4.
- Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
- Schoener, G., Stone, M.C. (2020). Monitoring soil moisture at the catchment scale – A novel approach combining antecedent precipitation index and radar-derived rainfall data, Journal of Hydrology, Volume 589, 125155, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2020.125155.
- Szabó A., Gribovszki Z., Bolla B., Balog K., Csáfordi P. és Tóth T. (2019): Észak-alföldi akác, nemesnyár és kocsányos tölgy erdőállományok hatása a talajvízre és ionforgalomra. Erdészettudományi Közlemények, 9(2): 87-97. https://doi.org/10.17164/EK.2019.006.
- Szabó, A., Gribovszki, Z., Kalicz, P., Szolgay, J., Bolla, B. (2022). The soil moisture regime and groundwater recharge in aged forests in the Sand Ridge region of Hungary after a decline in the groundwater level: an experimental case study. Journal of Hydrology and Hydromechanics. 70. https://doi.org/10.2478/johh-2022-0019.
- Szabó, A., Gribovszki, Z., Szolgay, J., Kalicz, P., Balog, K., Szalai, J., Hlavčová, K., Bolla, B. (2023). Groundwater Recharge from Below under Changing Hydro-Meteorological Conditions in a Forested and Grassland Site of the Great Hungarian Plain. Forests, 14, 2328. https://doi.org/10.3390/f14122328.
- Szabó, A., Gribovszki, Z., Kalicz, P., Szolgay, J., Gácsi, Z., & Bolla, B. (2024). Az erdőállományok talajvíz utánpótlódásra gyakorolt hatásának vizsgálata kecskemét-ménteleki mintaterületen [Investigation of the impact of forest stands on groundwater recharge in the Kecskemét-Méntelek study area]. Agrokémia és Talajtan, 73(2), 133-150. https://doi.org/10.1556/0088.2024.00168.
- Šraj, M., Brilly, M., Mikoš, M. (2008). Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology, 148:121–134. https://doi.org/10.1016/j.agrformet.2007.09.007.
- Szolgay, J., Blöschl, G., Gribovszki, Z., Parajka, J. (2020). Hydrology of the Carpathian Basin: Interactions of climatic drivers and hydrological processes on local and regional scales - HydroCarpath Research. Journal of Hydrology and Hydromechanics. 68. 128-133. https://doi.org/10.2478/johh-2020-0017.
- Staelens, J., De Schrijver, A., Verheyen, K. (2008). Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes 22:22–45. https://doi.org/10.1002/hyp.6610.
- Toba, T., Ohta, T. (2005). An observational study of the factors that influence interception loss in boreal and temperate forests. Journal of Hydrology 313:208–220. https://doi.org/10.1016/j.jhydrol.2005.03.003.
- Tóth, T., Balog, K., Szabó, A., Pásztor, L., Esteban G. Jobbágy, Marcelo D. Nosetto, Gribovszki, Z. (2014): Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas, AoB PLANTS, Volume 6, plu054, https://doi.org/10.1093/aobpla/plu054.
- Tölgyesi, Cs., Török, P., Hábenczyus, A. A., Bátori, Z., Valkó, O., Deák, B., Tóthmérész, B., Erdős, L. Kelemen, A. (2020). Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography. 43(6), 848–859. https://onlinelibrary.wiley.com/doi/10.1111/ecog.04906.
- Van Stan, J.T., Norman, Z., Meghoo, A. (2017). Edge-to-stem variability in wet-canopy evaporation from an urban tree row. Boundary-Layer Meteorology 165:295–310. https://doi.org/10.1007/s10546-017-0277-7.
- Wei, X., Bi, H., Liang, W. (2017). Factors controlling throughfall in a Pinus tabulaeformis forest in North China. Scientific Reports, 7.
- Xanke, J., Liesch, T. (2022). Quantification and possible causes of declining groundwater resources in the Euro-Mediterranean region from 2003 to 2020. Hydrogeology Journal 30, 379–400. https://doi.org/10.1007/s10040-021-02448-3.
- Xiao, Q., McPherson, E.G., Simpson, J.R. (1998). Rainfall interception by Sacramento’s urban forest. Journal of Arboriculture, 24:235–244.
- Xie, W., Yang, J. (2013). Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary, Journal of Integrative Agriculture, Volume 12, Issue 4, Pages 711-722, ISSN 2095-3119, https://doi.org/10.1016/S2095-3119(13)60289-0.
- Zabret, K., Rakovec, J., Šraj, M. (2018). Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. Journal of Hydrology, 558:29–41. https://doi.org/10.1016/j.jhydrol.2018.01.025.
- Zabret, K., Šraj, M. (2018). Spatial variability of throughfall under single birch and pine tree canopies. Acta hydrotechnica. 31. https://doi.org/10.15292/acta.hydro.2018.01.
- Zabret, K., Gribovszki, Z., Kalicz, P., Radulovic, L., Sraj, Mojca, Bezak, N. (2025). Stanje vlažnosti tal v odvisnosti od predhodnih padavin: primerjava meritev v parkih v Sloveniji in na Madžarskem. V: KUHAR, Miran (ur.), et al. Raziskave s področja geodezije in geofizike 2024: zbornik del: 30. srečanje Slovenskega združenja za geodezijo in geofiziko, Ljubljana, 30. januar 2025. Ljubljana: Slovensko združenje za geodezijo in geofiziko, 2025. Str. 53-59, ilustr. ISBN 978-961-95299-6-6. https://fgg-web.fgg.uni-lj.si/sugg/referati/2025/SZGG_Zbornik_2025_e-publikacija.pdf.
- Zagyvai-Kiss, K. A., Kalicz, P., Szilágyi, J., Gribovszki, Z. (2019). On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps, Agricultural and Forest Meteorology, Elsevier BV, 2019, 278, pp. 1-16, 107656, https://doi.org/10.1016/j.agrformet.2019.107656.
- Zipper, S.C., Schatz, J., Kucharik, C.J. (2017). Urban heat island-induced increases in evapotranspirative demand. Geophysical Research Letter 44: 873–881. https://doi.org/10.1002/2016GL072190.