A comparison of method of characteristics and Preissmann scheme for flood propagation modeling with 1D Saint-Venant equations
Primerjava metode karakteristik in Preissmannove sheme poplavnih valov z 1D Saint-Venantovimi enačbami
- Avtorji: Nino Krvavica, Vanja Travaš
- Citat: Acta hydrotechnica, vol. 27, no. 46, pp. 1-12, 2014.
- Povzetek: Saint-Venantove enačbe smo povezali z eksplicitno Metodo karakteristik in implicitno Preissmannovo shemo za potrebe primerjalne analize in ocene razlik v napovedovanju širjenja poplavnih valov v odprtih kanalih. V ta namen smo opazovali hipotetičen scenarij, pri čemer smo poplavni val opredelili s faznim hidrogramom na dotočnem robu prizmatičnega kanala. Dolvodni rob je bil določen s pogojem ničnega gradienta. Rezultate študije predstavljajo fazni hidrogrami na ekvidistantnih odsekih vzdolž kanala. Primerjalna analiza odkriva nekatere razlike med obema metodama. Razlike v konicah poplavnih valov so bolj očitne v višje ležečih odsekih, medtem ko so spodnji odseki bolj izpostavljeni razlikam v času pojava konic poplavnih valov. Eksplicitna Metoda karakteristik napoveduje nižje konice poplavnih valov in kasnejše nastope konic kot implicitna Preissmannova shema.
- Ključne besede: Saint Venantove enačbe, metoda karakteristik, Preissmannova shema, širenje poplavnih valov
- Polno besedilo: a46nt.pdf
- Viri:
- Akbari, G., Firoozi, B.M. (2010). Implicit and Explicit Numerical Solution of Saint-Venant Equations for Simulating Flood Wave in Natural Rivers, 5th National Congress on Civil Engineering, Ferdowsi University of Mashhad, Mashad, Iran.
- Bentley CivilStorm V8i, “User’s Guide”, Haestad Methods Solution Center, Watertown, USA.
- Chanson, H. (2004). The hydraulics of open channel flow: An introduction, Second Edition, Elsevier Butterworth-Heinemann, Oxford, UK.
- Chaudhry, M.H. (2008). Open-Channel Flow, Second Edition, Springer Science+Business Media, LLC, New York, USA.
- Crossley, A. J. (1999). Accurate and efficient numerical solution for Saint Venant equations of open channel flow, PhD theses, University of Nottingham, UK.
- Cunge, J., Holly, F.M., Verwey, A. (1980). Practical aspects of computational river hydraulics, Pitman Publushing, London, UK.
- Delphi, M. (2012). Application of characteristics method for flood routing (Case study: Karun River), Journal of Geology and Mining Research 4(1), 8–12.
- HEC-RAS 4.1 River Analysis System, (2010). “User’s Manual”, US Army Corps of Engineers, USA.
- Huang, J., Song, C.C.S. (1985). Stability of Dynamic Flood Routing Schemes, Journal of Hydraulic Engineering, 111(12), 1497–1505.
- Kreyszig, E. (2006). Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons Inc., USA.
- Lyn, D.A., Goodwin, P. (1987). Stability of General Preissmann Scheme, Journal of Hydraulic Engineering 113(1), 16–28.
- MATLAB. 2011, The MathWorks, Inc., Natick, Massachusetts, United States.
- Meselhe, E.A, Holly Jr, F.M. (1997). Invalidity of Preissmann Scheme for Transcritical Flow, Journal of Hydraulic Engineering 123(7), 652–655.
- Mohan Das, M. (2008). Open channel flow, Prentice-Hall of India Private Limited, New Delhi, India.
- Preissmann, A. (1961). Propagation of translatory waves in channels and rivers, Proc. 1st Congress of French Association for Computation, Grenoble, France.
- Sart, C., Baume, J.P., Malaterre, P.O., Guinot, V. (2010). Adaptation of Preissmann’s scheme for transcritical open channel flows, Journal of Hydraulic Research 48(4), 428–440.
- Shamaa, M.T. (2002). A Comparative Study of Two Numerical Methods for Regulating Unsteady Flow in Open Channels, Mansoura Engineering Journal 27(4).
- Subramanya, K. (1997). Flow in open channels, Tata McGraw-Hill Publishing Company Limited.
- Szymkiewicz, R. (2010). Numerical Modeling in Open Channel Hydraulics. Water Science and Technology Library, Volume 83, Springer, New York, USA.