Estimation of design floods using univariate and multivariate flood frequency approach with regard to one wet year
Ocena projektnih pretokov z uporabo univariatnih ter multivariatnih metod s poudarkom na vplivu nadpovprečno mokrega leta
- Avtorji: Nejc Bezak, Matjaž Mikoš
- Citat: Acta hydrotechnica, vol. 27, no. 47, pp. 103-117, 2014.
- Povzetek: Določitev projektnih pretokov in poplavnih valov je pomemben korak pri načrtovanju hidrotehničnih objektov. Uporabili smo metodo letnih maksimumov (AM), metodo vrednosti nad izbranim pragom (POT) ter multivariatno metodo z uporabo funkcij kopula za določitev vpliva izrazito nadpovprečno mokrega leta na rezultate verjetnostnih analiz. Verjetnostne analize (FFA) so bile izvedene z uporabo podatkov o pretokih z urnim ter dnevnim časovnim korakom. Uporabljeni so bili podatki s treh hudourniških porečij v Sloveniji, kjer so se v preteklem desetletju zgodili številni ekstremni dogodki. Rezultati analiz so pokazali, da je uporaba podatkov z dnevnim časovnim korakom neprimerna za hudourniška območja, ker se veliko informacij o dejanskih konicah pretokov izgubi v primerjavi z urnimi podatki. Upoštevanje dodatnega nadpovprečno mokrega leta v analizah sicer ima vpliv na projektne pretoke, vendar je ta vpliv v večini primerov manjši kot vpliv izbire metode za izvedbo verjetnostnih analiz.
- Ključne besede: verjetnostne analize, metoda letnih maksimumov, metoda vrednosti nad izbranim pragom, kopule, klimatske spremembe
- Polno besedilo: a47nb.pdf
- Viri:
- ARSO. (2014). Record high temperatures and accumulated rainfall amounts in year 2014=Rekordno toplo in izjemno namočeno leto 2014. Ljubljana, Ministrstvo za okolje in prostor, Agencija Republike Slovenije za okolje. http://www.arso.gov.si/novice/datoteke/033050-leto-2014.pdf (Pridobljeno 10.1.2015).
- ARSO. (2015). Ljubljana, Ministrstvo za okolje in prostor, Agencija Republike Slovenije za okolje. http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php (Pridobljeno 10.1.2015).
- Bezak, N., Brilly, M., Šraj, M., (2014). Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis, Hydrological Sciences Journal 59(5), 959–977.
- Bezak, N., Brilly, M., Šraj, M. (2015). Flood frequency analyses, statistical trends and seasonality analyses of discharge data: a case study of the Litija station on the Sava River, Journal of Flood Risk Management, doi: 10.1111/jfr3.12118.
- Burn, D.H. (1997). Catchment similarity for regional flood frequency analysis using seasonality measures, Journal of Hydrology, 202(1-4), 212–230.
- Cunnane, C. (1979). Note on the poisson assumption in partial duration series models, Water Resources Research 15(2), 489–494.
- Douglas, E.M., Vogel, R.M., Kroll, C.N. (2000). Trends in floods and low flows in the United States: impact of spatial correlation, Journal of Hydrology 240(1-2), 90–105.
- Hall, J., Arheimer, B., Borga, M., Brazdil, R., Claps, P., Kiss, A., Kjeldsen, T.R., Kriauciuniene, J., Kundzewicz, Z.W., Lang, M., Llasat, M.C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigao, R.A.P., Plavcova, L., Rogger, M., Salinas, J.L., Sauquet, E., Schaer, C., Szolgay, J., Viglione, A., Bloeschl, G. (2014). Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrology and Earth System Sciences 18(7), 2735–2772.
- Hosking, J.R.M., Wallis, J.R. (1997). Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge, 224 p.
- Joe, H. (1997). Multivariate models and dependence concepts. Chapman & Hall, London; New York.
- Kendall, M.G. (1975). Multivariate analysis. Griffin, London.
- Kobold, M. (2011). Comparison of Floods in September 2010 with Registered Historic Flood Events, Ujma 25, 48–56 (In Slovene).
- Koffler, D., Laaha, G. (2012). LFSTAT- an R-package for low-flow analysis. EGU General Assembly, Vienna 22–27.4. Available at: http://cran.r-project.org/web/packages/lfstat/index.html.
- Koler, B., Urbančič, T., Vidmar, A., Globevnik, L. (2012). Analysis of the flood in Ljubljana and on the Ljubljana Moor, Geodetski Vestnik 56(4), 846–860.
- Lang, M., Ouarda, T., Bobee, B. (1999). Towards operational guidelines for over-threshold modeling, Journal of Hydrology 225(3-4), 103–117.
- Maidment, D.R. (1993). Handbook of hydrology. McGraw-Hill, New York etc.
- Marchi, L. Borga, M., Preciso, E., Sangati, M., Gaume, E., Bain, V., Delrieu, G., Bonnifait, L., Pogačnik, N. (2009). Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned Hydrological Processes 23(26), 3761–3770.
- Meylan, P., Favre, A.C., Musy, A. (2012). Predictive Hydrology: A Frequency Analysis Approach. CRC Press, 212 p.
- Nelsen, R.B. (1999). An introduction to copulas. Springer, New York.
- Önöz, B., Bayazit, M. (2001). Effect of the occurrence process of the peaks over threshold on the flood estimates, Journal of Hydrology 244(1-2), 86–96.
- Reddy, M.J., Ganguli, P. (2012). Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas, Water Resources Management 26(14), 3995–4018.
- Robson, A.J., Reed, D.W. (1999). Statistical procedures for flood frequency estimation. Volume 3 of the Flood Estimation Handbook. Wallingford: Centre for Ecology & Hydrology.
- Rusjan, S., Kobold, M., Mikoš, M. (2009). Characteristics of the extreme rainfall event and consequent flash floods in W Slovenia in September 2007, Natural Hazards and Earth System Sciences 9(3), 947–956.
- Salinas, J.L., Castellarin, A., Viglione, A., Kohnova, S., Kjeldsen, T.R. (2014). Regional parent flood frequency distributions in Europe - Part 1: Is the GEV model suitable as a pan-European parent?, Hydrology and Earth System Sciences 18(11), 4381–4389.
- Salvadori, G., De Michele, C., Kottegoda, N.T., Rosso, R. (2007). Extremes in nature an approach using Copulas. Springer, Dordrecht.
- Šraj, M., Bezak, N., Brilly, M. (2015). Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River, Hydrological Processes 29, 225–238.
- USWRC. (1982). Guidelines for determining flood flow frequency. U.S. Dept. of the Interior, Geological Survey, Office of Water Data Coordination, Reston.
- Vandenberghe, S., Verhoest, N.E.C., Onof, C., De Baets, B. (2011). A comparative copula-based bivariate frequency analysis of observed and simulated storm events: A case study on Bartlett-Lewis modeled rainfall, Water Resources Research 47, doi:10.1029/2009wr008388.
- Xu, Y.-P., Booij, M.J., Tong, Y.-B. (2010). Uncertainty analysis in statistical modeling of extreme hydrological events, Stochastic Environmental Research and Risk Assessment 24(5), 567–578.
- Zanon, F., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., Bonnifait, L., Delrieu, G. (2010). Hydrological analysis of a flash flood across a climatic and geologic gradient The September 18, 2007 event in Western Slovenia, Journal of Hydrology 394(1-2), 182–197.
- Zhang, L., Singh, V.P. (2006). Bivariate flood frequency analysis using the copula method, Journal of Hydrologic Engineering 11(2), 150–164.