Usage of hydrolytic enzymes for anaerobic digestion optimization in a wastewater treatment plant
Uporaba hidrolitskih encimov za optimizacijo anaerobne presnove na čistilni napravi
- Avtorji: Sabina Kolbl
- Citat: Acta hydrotechnica, vol. 28, no. 48, pp. 65-76, 2015.
- Povzetek: Raziskovali smo vpliv dodajanja dveh različnih hidrolitskih encimov na proces anaerobne presnove in dinamiko tvorjenja metana v mezofilnem temperaturnem območju 37°C. Metanski potencial blata in čistilne naprave je znašal 319 ± 11 mL CH4 g-1 OS-1. Z dodajanjem encimov MicropanBiogas smo uspeli metanski potencial povečati za 8 % (339 ± 11 mL CH4 g-1 OS-1), z dodajanjem encimov Novozymes pa za 45 % (455 ± 28 mL CH4 g-1 OS-1). Ostali fizikalno kemijski parametri so se gibali znotraj stabilnega območja anaerobne presnove. Koeficienti hidrolize so bili v primeru dodajanja encimov večji kot v kontrolnih reaktorjih. Ocenili smo tudi prileganje modificiranih modelov Gompertz, Logistic in Transfer izmerjenim realnim vrednostim dinamike nastajanja metana v šaržnih anaerobnih reaktorjih. Najbolje se je prilegal model Transfer, sledila sta modela Gompertz in Logistic. Stroški dodajanja encimov bi se povrnili že pri 8 % večji produkciji metana.
- Ključne besede: anaerobna presnova, encimi, model, optimizacija
- Polno besedilo: a48sk.pdf
- Viri:
- Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B. (2009). Defining the methane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays, Water Science and Technology 59(5), 927–934.
- APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington, USA.
- Batstone, D.J., Tait, S., Starrenburg, D. (2009). Estimation of hydrolysis parameters in full-scale anerobic digesters, Biotechnology and Bioengineering 102(5), 1513–1520.
- Batstone, D.J., Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy, Current Opinion in Biotechnology 27, 142–149.
- Bruni, E., Jensen, A.P., Angelidaki, I. (2010). Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production, Bioresource Technology, 101(22), 8713–8717.
- Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F. (2012). The effects of substrate pre-treatment on anaerobic digestion systems: A review, Waste Management 32(9), 1634–1650.
- Chernicharo, C.A.D.L. (2007). Anaerobic Reactors. IWA Publishing, London.
- Herrmann, C., Heiermann, M., Idler, C., Prochnow, A. (2012a). Particle Size Reduction during Harvesting of Crop Feedstock for Biogas Production I: Effects on Ensiling Process and Methane Yields, BioEnergy Research, 5(4), 926–936.
- Herrmann, C., Prochnow, A., Heiermann, M., Idler, C. (2012b). Particle Size Reduction During Harvesting of Crop Feedstock for Biogas Production II: Effects on Energy Balance, Greenhouse Gas Emissions and Profitability, BioEnergy Research, 5(4), 937–948.
- Huiliñir, C., Quintriqueo, A., Antileo, C., Montalvo, S. (2014). Methane production from secondary paper and pulp sludge: Effect of natural zeolite and modeling, Chemical Engineering Journal 257, 131–137.
- Kolbl, S., Paloczi, A., Panjan, J., Stres, B. (2014). Addressing case specific biogas plant tasks: Industry oriented methane yields derived from 5 L Automatic Methane Potential Test Systems in batch or semi-continuous tests using realistic inocula, substrate particle sizes and organic loading, Bioresource Technology 153, 180–188.
- Kolbl, S., Panjan, J., Stres, B. (2016). Mixture of primary and secondary municipal wastewater sludge as a short-term substrate in 2 MW agricultural biogas plant: site-specific sustainability of enzymatic and ultrasound pretreatments, Journal of Chemical Technology & Biotechnology doi: 10.1002/jctb.4883.
- Luo, K., Yang, Q., Li, X.-m., Yang, G.-j., Liu, Y., Wang, D.-b., Zheng, W., Zeng, G.-m. (2012). Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase, Biochemical Engineering Journal 62, 17–21.
- Mudhoo, A. (2012). Biogas Production: Pretreatment Methods in Anaerobic Digestion. Wiley & Sons, New Jersey.
- Murovec, B., Kolbl, S., Stres, B. (2015). Methane Yield Database: Online infrastructure and bioresource for methane yield data and related metadata,. Bioresource Technology 189, 217–223.
- Nielfa, A., Cano, R., Fdz-Polanco, M. (2015). Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge, Biotechnology Reports 5, 14–21.
- Quiñones, T.S., Plöchl, M., Päzolt, K., Budde, J., Kausmann, R., Nettmann, E., Heiermann, M. (2012). Hydrolytic Enzymes Enhancing Anaerobic Digestion. in: Biogas Production, John Wiley & Sons, Inc., pp. 157–198.
- Rajagopal, R., Massé, D.I., Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia, Bioresource Technology 143, 632–641.
- Raposo, F., De la Rubia, M.A., Fernandez-Cegri, V., Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures, Renewable & Sustainable Energy Reviews 16(1), 861–877.
- Song, Y.-C., Kwon, S.-J., Woo, J.-H. (2004). Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge, Water Research 38(7), 1653–1662.
- Tezel, U., Tandukar, M., Pavlostathis, S.G. (2011). 6.35 - Anaerobic Biotreatment of Municipal Sewage Sludge. in: Comprehensive Biotechnology (Second Edition), (Ed.) M.-Y. Editor-in-Chief: Murray, Academic Press. Burlington, pp. 447–461.
- Vavilin, V.A., Fernandez, B., Palatsi, J., Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview, Waste Management 28(6), 939–951.
- Vavilin, V.A., Rytov, S.V., Lokshina, L.Y. (1996). A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter, Bioresource Technology 56(2-3), 229–237.
- Ziemiński, K., Romanowska, I., Kowalska, M. (2012). Enzymatic pretreatment of lignocellulosic wastes to improve biogas production, Waste Management 32(6), 1131–1137.