Analysis of rainfall erosivity using disdrometer data at two stations in central Slovenia
Analiza erozivnosti padavin na dveh merilnih mestih v osrednji Sloveniji z uporabo podatkov z disdrometrov
- Avtorji: Arturo Ciaccioni, Nejc Bezak, Simon Rusjan
- Citat: Acta hydrotechnica, vol. 29, no. 51, pp. 89-101, 2016.
- Povzetek: Erozivni padavinski dogodki lahko povzročijo velike probleme v kmetijstvu in ostalih dejavnostih zaradi izgub rodovitne zemljine. Meritve padavin z visoko frekvenco zajema podatkov so s tega vidika uporabne za izboljšanje našega razumevanja o procesih erodiranja zemljine. V prispevku je predstavljena analiza meritev padavin v letih 2013, 2014 in 2015 na dveh lokacijah v osrednjem delu Slovenije, Ljubljani in Črnem Vrhu nad Polhovih Gradcem, ki ju lahko okarakteriziramo z zmernimi celinskimi podnebnimi značilnostmi. Minutni padavinski podatki uporabljeni v tej raziskavi so bili pridobljeni z optičnima disdrometroma. Rezultati kažejo na veliko spremenljivost erozivnosti padavin na relativno kratkih razdaljah. Erozivnost posameznih ekstremnih opazovanih padavinskih dogodkov lahko doseže letne vrednosti erozivnosti padavin na posamezni postaji. Na osnovi merjenih podatkov je bila opažena tudi velika sezonska spremenljivost erozivnosti. Nadalje so bile testirane različne enačbe, ki povezujejo kinetično energijo dežnih kapljic in intenziteto padavin (t.i. KE-I enačbe). Rezultati kažejo, da so enačbe pridobljene na osnovi lokalno merjenih* Stik / Correspondence: simon.rusjan@fgg.uni-lj.si © Ciaccioni A. et al.; Vsebina tega članka se sme uporabljati v skladu s pogoji licence Creative Commons Priznanje avtorstva – Nekomercialno – Deljenje pod enakimi pogoji 4.0. © Ciaccioni A. et al.; This is an open-access article distributed under the terms of the Creative Commons Attribution – Non Commercial – Share Alike 4.0 Licence. 89 Ciaccioni A. et al.: Analysis of rainfall erosivity using disdrometer data at two stations in central Slovenia – Analizaerozivnosti padavin na dveh merilnih mestih v osrednji Sloveniji z uporabo podatkov z disdrometrov Acta hydrotechnica 29/51 (2016), 89-101 Ljubljanapodatkov bolj primerne za oceno erozivnosti dežja v primerih, ko ni lokalno razpoložljivih podatkov z naprav kakršen je disdrometer.
- Ključne besede: meritve padavin, disdrometer, erozivnost padavin, sezonska spremenljivost
- Polno besedilo: a29ac.pdf
- Viri:
- Angulo-Martínez, M., Barros, A. P. (2015). Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains, Geomorphology 228, 28–40.
- Angulo-Martínez, M., Beguería, S., Kyselý, J. (2016). Use of disdrometer data to evaluate the relationship of rainfall kinetic energy and intensity (KE-I), Science of the Total Environment 568, 83–94.
- ARSO. 2016. Available at: http://meteo.arso.gov.si (accessed 18/07/2016).
- Bezak, N., Grigillo, D., Urbančič, T., Mikoš, M., Petrovič, D., Rusjan, S. (2016). Geomorphic response detection and quantification in a steep forested torrent, Geomorphology doi: 10.1016/j.geomorph.2016.06.034.
- Blanchard, D. C. (1953). Raindrop size-distribution in Hawaiian rains, Journal of Meteorology 10(6), 457–473.
- Brandt, J. (1988). The transformation of rainfall energy by a tropical rain forest canopy in relation to soil erosion, Journal of Biogeography 15, 41–48.
- Brandt, C. J. (1990). Simulation of the size distribution and erosivity of raindrops and throughfall drops, Earth Surface Processes and Landforms 15(8), 687–698.
- Brown, L. C., Foster G. R. (1987). Storm erosivity using idealised intensity distribution, Transactions of the American Society of Agricultural Engineers 30(2), 379–386.
- Carollo, F. G., Ferro, V. (2011). Stima della potenza cinetica della precipitazione a partire da osservazioni disdrometriche di distribuzioni dimensionali delle gocce di pioggia (Estimation of kinetic power of precipitation on the basis of disdrometer observations on raindrop size distribution), L’Italia Forestale e Montana 66(6), 499–508 (in Italian).
- Carollo, F. G., Ferro, V., Serio, M. A. (2016). Estimating rainfall erosivity by aggregated drop size distributions, Hydrological Processes 30, 2119–2128.
- Carter, C. E., Greer, J. D., Braud, H. J., Floyd, J. M. (1974). Raindrop characteristics in south central United States, Transactions of the American Society of Agricultural Engineers 17(6), 1033–1037.
- Casazza, M. (2016). Some Metrological Limitations to Rain Impact Computation in Storm Erosivity as Defined in the Revised Universal Soil Loss Equation, Version 2 (RUSLE2), Journal of Environmental Accounting and Management 4(1), 35–42.
- Ceglar, A., Zupanc, V., Kajfez-Bogataj, L. (2008). A comparative study of rainfall erosivity for eastern and western Slovenia, Acta Agriculturae Slovenica 91(2), 331–341.
- Cerro, C., Bech, J., Codina, B., Lorente, J. (1998). Modeling Rain Erosivity Using Disdrometric Techniques, Soil Science Society of America Journal 62(3), 731–735.
- Coutinho, M. A., Tomás, P. P. (1995). Characterisation of raindrop size distribution at the Vale Formoso experimental erosion center, Catena 25(1), 187–197.
- Diodato, N., Bellocchi, G. (2012). Decadal modelling of rainfall–runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices. Global and Planetary Change 86, 79–91.
- Dunkerley, D. (2015). Intra-event intermittency of rainfall: an analysis of the metrics of rain and no-rain periods, Hydrological Processes 29, 3294–3305.
- Fornis, R. L., Vermeulen, H. R. Nieuwenhuis, J. D. (2005). Kinetic energy–rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies, Journal of Hydrology 300, 20–32.
- Hinkle, S. E., Heermann, D. F., Blue, M. C. (1987). Falling Water Drop Velocities at 1570 m Elevation, Transactions of the American Society of Agricultural Engineers 30(1), 94–100.
- Hudson, N. W. (1965). The influence of rainfall on the mechanics of soil erosion, M.S. thesis, University of Cape Town.
- Jayawardena, A. W., Rezaur, R. B. (2000). Drop size distribution and kinetic energy load of rainstorms in Hong Kong, Hydrological Processes 14(6), 1069–1082.
- Kinnel, P. I. A. (1973). The problem of assessing the erosive power of rainfall from meteorological observations, Soil Science Society of America Journal 37(4), 617–621.
- Kinnel, P. I. A. (1976). Some Observations on the Joss-Waldvogel Rainfall Disdrometer, Journal of Applied Meteorology 15(5), 499–502.
- Kinnell, P. I. A. (1980). Rainfall intensity-kinetic energy relationships for soil loss prediction, Soil Science Society of America Journal 45(1), 153–155.
- KSH. 2016. Available at: http://ksh.fgg.uni-lj.si (accessed 21/07/2016).
- Lanzinger, E., Theel, M., Windolph, H., (2006). Rainfall amount and intensity measured by the Thies laser precipitation monitor. TECO-2006—WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, Geneva, Switzerland, World Meteorological Organisation, Instruments and observing methods, IOM No. 94. 3(3).Laws, J. O., Parsons, D. A. (1943). The relation of raindrop‐size to intensity, Transactions American Geophysical Union 24(2), 452–460.
- Lim J. S., Kim J. K., Kim J. W., Park B. I., Kim M. S. (2015). Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea, Quaternary International 384, 107–117.
- Marshall, J. S., Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of meteorology 5(4), 165–166.
- McGregor, K. C., Mutchler, C. K. (1976). Status of the R factor in Northern Mississipi. Procedings of National Conference on Soil Erosion, Purde university, West Lafayette, IN, pp. 135–142.
- McIsaac, G. F. (1990). Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy, Journal of Soil and Water Conservation 45(6), 663–666.
- Mikoš, M., Jošt, D., Petkovšek, G. (2006). Rainfall and runoff erosivity in the alpine climate of north Slovenia: a comparison of different estimation methods, Hydrological Sciences–Journal 51(1), 115–126.
- Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., Styczen, M. E., Folly, A. J. V. (1998). The European Soil Erosion Model (EUROSEM): documentation and user guide, Version 3.6, Cranfield University, 30 pp.
- Morgan, R. P. C. (2001). A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney model, Catena 44(4), 305–322.
- Onaga, K., Shirai, K., Yoshinaga, A. (1988). Rainfall erosion and how to control its effects on farmland in Okinawa, in: S. Ž. Rimwanich, Ed., Land Conservation for Future Generations. Department of Land Development, Bangkok, pp. 627–639.
- OTT (2008). Operating instructions, Present Weather Sensor Parsivel. Kempten, OTT MESSTECHNIK GmbH & Co. 48 pp.
- Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Perčec Tadić M., Michaelides S., Harabariková M., Olsen P., Aalto J., Lakatos M., Rymszewicz A., Dumitrescu A., Beguería S., Alewell C. (2015). Rainfall erosivity in Europe, Science of the Total Environment 511, 801–814.
- Pandit, D. V., Isaac, R. K. (2015). A Scenario of Rainfall Erosivity Index Research, International Journal of Engineering Research 4(12), 668–672.
- Petan, S., Rusjan, S., Vidmar, A., Mikoš M. (2010). The rainfall kinetic energy–intensity relationship for rainfall erosivity estimation in the mediterranean part of Slovenia, Journal of Hydrology 391, 314–321.
- Petan, S. (2010). Meritive in modeliranje erozivnosti padavin kot parametra erozije tal (measurements and spatial modelling of rainfall erosivity as a soil erosion factor) Doctoral Thesis, Univerza v Ljubljani, FGG, 205 pp. (in Slovenian).
- Roswell, C.J. (1986). Rainfall Kinetic Energy in Eastern Australia, Journal of Climate and Applied Meteorology 25, 1695–1701.
- Rusjan, S., Mikoš, M., Bezak, N. (2015). Vodna erozija v porečju Gradaščice=Water erosion in the Gradaščica River catchment. Ujma 29, 79–84.
- Salles, C., Poesen, J. (1999). Performance of an optical spectro pluviometer in measuring basic rain erosivity characteristics, Journal of Hydrology 218, 142–156.
- Sánchez-Moreno, J. F., Mannaerts, C. M., Jetten, V., Löffler-Mang, M. (2012). Rainfall kinetic energy–intensity and rainfall momentum–intensity relationships for Cape Verde, Journal of Hydrology 454, 131–140.
- Sasi Kumar, V., Sampath, S., Vinayak, P. V. S. S. K., Harikumar, R. (2007). Rainfall intensity characteristics at coastal and high altitude stations in Kerala, Journal of Earth System Science 116(5), 451–463.
- Sempere-Torres, D., Salles, C., Creutin, J. D., Delrieu, G. (1992). “Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms” in: J. Bogen, D. E. Walling, T. Day, Eds., Erosion and Sediment Transport Monitoring Programmes in River Basins. IAHS Publ. 210, Oslo, pp. 115–124.
- Thies Clima (2006). Laser Precipitation Monitor, Instruction for use 021341/02/06. Gottigen Adolf Thies GmbH & Co. 56 pp.
- Todisco, F., Mannocchi, F., Vergni, L., Vinci, A. (2009). Plot scale measurements of rainfall erosion losses in central Italy. The Role of Hydrology in Water Resources Management, Capri, Italy. IAHS Publ. 327, 324–327.
- Todisco, F. (2014). The internal structure of erosive and non-erosive storm events for interpretation of erosive processes and rainfall simulation, Journal of Hydrology 519, 3651–3663.
- Tracy, F. C., Renard, K. G., Fogel, A. M. (1984). Rainfall energy characteristics for southeastern Arizona. Proceedings of American Society of Civil Engineering, IDD Speciality conference “Water-Yoday and Tomorrow”, Flagstaff, Arizzona, pp. 559–566.
- Trenberth, K. E. (1983). What are the seasons?, Bulletin of the American Meteorological Society 64(11), 1276–1282.
- USDA (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE), Agriculture handbook Number 703, 385 pp.
- Usón, A., Ramos, M. C. (2001). An improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate, Catena 43(4), 293–305.
- Van Dijk, A. I. J. M., Bruijnzeel, L. A., Rosewell, C. J. (2002). Rainfall intensity–kinetic energy relationships: a critical literature appraisal, Journal of Hydrology 261, 1–23.
- Zanchi, C., Torri, D. (1980). “Evaluation of rainfall energy in central Italy” in: M. De Boodt, D. Gabriels, Eds., Assessment of Erosion. Wiley, Toronto, pp. 133–142.
- Zhang, Y. G., Nearing, M. A., Zhang, X. C., Xie, Y., Wei, H. (2010). Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China, Journal of hydrology 384(1), 97–106.