Two-dimensional unconfined seepage flow toward a highway cut slope
Dvodimenzionalni tok podzemne vode s prosto gladino proti avtocestnemu vkopu
- Avtorji: Yebegaeshet T. Zerihun
- Citat: Acta hydrotechnica, vol. 36, no. 65, pp. 95-109, 2023. https://doi.org/10.15292/acta.hydro.2023.06
- Povzetek: Z numeričnim modelom višjega reda je bil raziskan gravitacijski tok pri prosti gladini v bližini meje prostega odtoka, kot je na primer vkop avtoceste. Za razliko od Dupuit–Forchheimerjeve enačbe, ki se uporablja predvsem za hidravlični tok, predlagani model upošteva vplive vertikalne komponente toka za celovito obravnavo problema ravninskega toka vode pri prosti gladini. Enačbe modela toka so bile numerično rešene s pomočjo diferenčne sheme. Natančnost rešitve je bila preverjena ob upoštevanju dvodimenzionalnega toka in s strogimi matematičnimi pristopi. Za naklone vkopa, ki je položnejši od 70º, so razlike v višini vode na precejnem robu med rešitvami tega modela in prejšnjimi pristopi skoraj zanemarljive. Primerjava rezultatov je prav tako pokazala na znatne vplive naklona vkopa na višino vode na precejnem robu in odtok. Poleg tega je natančnost modelne napovedi za potek gladine podzemne vode in porazdelitev hidravličnih višin na različnih navpičnih odsekih veliko boljša od prejšnje metode, ki vodonosnik trapezne oblike upošteva kot ekvivalentni pravokotni vodonosnik. Zadovoljivo rešitev je možno pripisati modelnemu korekcijskemu faktorju višjega reda za učinke ukrivljenosti gladine podzemne vode in strmega pobočja.
- Ključne besede: Precejanje pri prosti gladini, gladina podzemne vode, vkop, odtok, nehidrostatsko precejanje, višina vode na precejnem robu.
- Polno besedilo: a36yz.pdf
- Viri:
- Bear, J., Zaslavsky, D., Irmay, S. (1968) Physical Principles of Water Percolation and Seepage. Arid Zone Research - XXIX, UNSECO: Paris, France.
- Bear, J. (1988) Dynamics of Fluid in Porous Media. Dover Publications Inc.: Mineola, NY, USA.
- Bickley, W. G. (1941) Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27, https://doi.org/10.2307/3606475.
- Billstein, M. (1998) Development of a Numerical Model of Flow through Embankment Dams. Licentiate Thesis, Department of Environmental Engineering, Luleå University of Technology, Luleå, Sweden.
- Boussinesq, J. (1871) Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire (Theory of liquid wave referred to as a solitary or a translation wave, propagating in a rectangular canal). Comptes Rendus, Académie des Sciences, 72, 755–759 [in French].
- Casagrande, A. (1937) Seepage through dams. J. New England Water Works Assoc., 51(2), 131–172.
- Castro-Orgaz, O., Hager, W. H. (2014) One-dimensional modeling of curvilinear free-surface flow: Generalized Matthew theory. J. Hydraul. Res., 52(1), 14–23. https://doi.org/10.1080/00221686.2013.834853.
- Chapman, T. G. (1980) Modeling groundwater flow over sloping beds. Water Resour. Res., 16(6), 1114–1118. https://doi.org/10.1029/WR016i006p01114.
- Chapman, T. G., Dressler, R. F. (1984) Unsteady shallow groundwater flow over a curved impermeable boundary. Water Resour. Res. 20(10), 1427–1434. https://doi.org/10.1029/WR020i010p01427.
- Chapman, T. G., Ong, G. (2006) A new equation for shallow groundwater flow over a curved impermeable boundary: Numerical solutions and laboratory tests. Water Resour. Res., 42, W03427, https://doi.org/10.1029/2005WR004437.
- Childs, E. C. (1971) Drainage of groundwater resting on a sloping bed. Water Resour. Res., 7(5), 1256–1263. https://doi.org/10.1029/WR007i005p01256.
- Dagan, G. (1967) Second-order theory of shallow free-surface flow in porous media. Q. J. Mech. Appl. Math., 20, 517–526. https://doi.org/10.1093/qjmam/20.4.517.
- Di Nucci, C. (2018) Unsteady free-surface flow in porous media: One-dimensional model equations including vertical effects and seepage face. C. R. Mecanique, 346, 366–383.
- Dupuit, J. (1863) Études Théoriques et Pratiques sur le Mouvement des Eaux dans les Canaux Découverts et a Travers les Terrains Perméables (Theoretical and Practical Studies on Water Movement in Open Channels and across Permeable Terrains). deuxième édition; Dunod: Paris, France, 229–293 [in French].
- Forchheimer, P. (1886) Über die ergieblgkeit von brunnenanlagen und sickerschlitzen (On the productivity of well systems and seepage slits). Zeitschnft des Archttekten und Ingcnieurvereins zu Hannover, 32(7), 538–564 [in German].
- Forchheimer, P. (1914) Hydraulik (Hydraulics). 1st ed.; Druck und Verlag Von B. G. Teubner: Leipzig und Berlin, Germany, 420–467 [in German].
- Fukuchi, T. (2018) New high-precision empirical methods for predicting the seepage discharges and free-surface locations of earth dams validated by numerical analyses using the IFDM. Soils Found., 58, 427–445.
- Hall, H. P. (1955) An investigation of steady flow toward a gravity well. La Houille Blanche, 10(1-2), 8–35.
- Hantush, M. S. (1962) On the validity of the Dupuit–Forchheimer well-discharge formula. J. Geophys. Res., 67(6), 2417–2420. https://doi.org/10.1029/JZ067i006p02417.
- Harr, M. E. (1991) Groundwater and Seepage. Dover Publications Inc.: Mineola, NY, USA.
- Hilberts, A. G. J., von Loon, E. E., Troch, P. A., Paniconi, C. (2004) The hillslope-storage Boussinesq model for non-constant bedrock slope. J. Hydrol., 291, 160–173. https://doi.org/10.1016/j.jhydrol.2003.12.043.
- Kacimov, A., Obnosov, Y. (2012) Analytical solutions for seepage near material boundaries in dam cores: The Davison–Kalinin problems revisited. Appl. Math. Model., 36, 1286–1301. https://doi.org/10.1016/j.apm.2011.07.088.
- Kashef, A. I. (1969) Groundwater movement toward artificial cuts. Water Resour. Res., 5(5), 1032–1040. https://doi.org/10.1029/WR005i005p01032.
- Knight, J. H. (2005) Improving the Dupuit–Forchheimer groundwater free-surface approximation. Adv. Water Resour., 28(10), 1048–1056. https://doi.org/10.1016/j.advwatres.2005.04.014.
- Kozeny, J. (1931) Grundwasserbewegung bei freiem Spiegel, Fluss und Kanalversickerung (Groundwater movement at free level, River and Channel Infilitration). Wasserkraft und Wasserwirtsehaft, 26(3), 28–31 [in German].
- Lacy, S. J., Prevost, J. H. (1987) Flow through porous media: A procedure for locating the free surface. Int. J. Numer. Anal. Meth. Geomech., 11, 585–601. https://doi.org/10.1002/nag.1610110605.
- Matthew, G. D. (1991) Higher order, one-dimensional equations of potential flow in open channels. Proc. Instn. Civ. Eng., 91(3), 187–201. https://doi.org/10.1680/iicep.1991.14974.
- Mikhailov, G. K. (1952) Concerning the Seepage in Trapezoidal Dams on Horizontal Bedrock. Gidrotekhnika i Melioratsiya, No. 1, USSR [in Russian].
- Muleshkov, A. and Banerjee, S. (1987) Seepage towards vertical cuts. J. Geotech. Eng., 113(12), 1419–1431. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:12(1419).
- Muskat, M. (1946) The Flow of Homogeneous Fluids through Porous Media. J. W. Edwards, Inc.: Ann Arbor, MI, USA.
- Pavlovsky, N. N. (1931) On Seepage through Earth Dams. Instituta Gidrotekhniki i Melioratsii, Leningrad, USSR [in Russian].
- Polubarinova-Kochina., P. Ya., Falkovich, S. B. (1951) Theory of filtration of liquids in porous media. In: Advances in Applied Mechanics, von Mises, R. and von Kármán, T. (eds.), Academic Press, New York, NY, USA, 2, 153–225.
- Polubarinova-Kochina, P. Ya. (1962) Theory of Groundwater Movement. Princeton University Press: Princeton, NJ, USA.
- Rayleigh, L. (1876) On waves. Phil. Mag., 1(4), 257–279. Available online: http://archive.org/details/londonedinburgh511876lond (accessed on 10 November 2022).
- Vauclin, M., Khanji, D., Vachaud, G. (1979) Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem. Water Resour. Res., 15(5), 1089–1101. https://doi.org/10.1029/WR015i005p01089.
- Zerihun, Y. T. (2018) Extension of the Dupuit–Forchheimer model for non-hydrostatic flows in unconfined aquifers. Fluids, 3(2), https://doi.org/10.3390/fluids3020042.
- Zerihun, Y. T. (2020) A numerical investigation of transient groundwater flows with a phreatic surface along complex hillslopes. Slovak J. Civ. Eng., 28(1), 11–19. https://doi.org/10.2478/sjce-2020-0002.